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Outline

• Why study weak interactions using neutron beta y y g
decay?
– Because of the scientific reach
– Because of the impact across nuclear and particleBecause of the impact across nuclear and particle 

physics
• Neutron beta decay correlations

Ho and h o meas re them– How and why you measure them
– Some sample experiments from the field

• Neutron lifetime
– The problem and its impact
– Some recent and upcoming experiments
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Neutron beta decay can have 
remarkable scientific reachremarkable scientific reach

• Two choices for detecting a force 
i f Mcarrier of mass M:

– Direct detection, if enough energy 
available
Virtual effects if not– Virtual effects, if not

• If energy is close to mass, then 
signal may be large and function of 
energy
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• But if energy is much less than 

mass, then signal is independent of 
energy!
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• So the smart thing to do is choose 
the experiment that gives the best 
precision
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Neutron Decay Parameters

• Semi-leptonic decaySemi leptonic decay
– Lifetime 880 s
– Endpoint energy 782 keVp gy

• Just two free parameters in SM eepn  

– CKM mixing matrix element
– Ratio of weak coupling constants  22 31
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– Uncertainty comes from radiative 
corrections
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Neutron beta decay can inform many 
areas of physicsareas of physics

• Many reactions share the same Feynman diagram as 
neutron beta decayneutron beta decay
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Decay Correlations
• A: electron asymmetry

P k II P k III UCNA
en p



– Perkeo II, Perkeo III, UCNA
• B: neutrino asymmetry

Perkeo II
 pn



– Perkeo II

• C: proton asymmetry
Perkeo II

pn p


– Perkeo II
• D: triple correlation

TRINE emiT
  ppen




– TRINE, emiT
• a: electron-neutrino correlation

– aSpect aCORN Nab
ppe



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aSpect, aCORN, Nab

Plus Fierz interference b, helicity correlations, etc.



Search for new physics

• A single parameter yields g p y
, multiple measurements 
yield Vud and beyond

• CKM unitarity 1222  VVVCKM unitarity
– Do neutrons and 

superallowed beta decays 
agree?

1 ubusud VVV

1σ,2σ,3
σ

excluded
• Search for right-handed 

currents  (250 GeV limit 
from n decay)

SM

allowed 

from n decay)
• Scalar and tensor 

couplings from B and b
Cirigliano 2012
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– Cirigliano 2012
Holeczek et al., arxiv 1303.5295 (2013)



Principle of the A-coefficient 
Measurement (and B and C as well)Measurement (and B and C as well)

B fieldDetector 1 Detector 2
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(End point energy = 782 keV)



Potential Sources of Systematics

• Neutron polarization determination• Neutron polarization determination
• Background

Due to neutrons that do not decay– Due to neutrons that do not decay

• Detector-related effects
– Electron backscattering and spectroscopyElectron backscattering and spectroscopy
– Edge effect (fiducial volume selection)
– Detector response, calibration

• Statistics
– Large decay volume, high density
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Perkeo II Experiment Measured ABC

PERKEO IIPERKEO II:
β-Asymmetrie A = − 0.1200±0.0006,  PRL, in print (2013)

p-Asymmetrie B = + 0.983±0.005,      PRL 99, 191803 (2007)

ν Asymmetrie C = − 0 239±0 003 PRL 100 151801 (2008)ν-Asymmetrie C =  0.239±0.003,      PRL 100, 151801 (2008)
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Perkeo III is state of art of CN beta 
decaydecay

• Backgrounds eliminated using pulsed beam
• 50 kHz decay rate• 50 kHz decay rate
• Total uncertainty expected to be A/A=2.1e-3
• Results very soon!Results very soon!
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PERC is the next generation
• Proton Electron Radiation Channel
• 8 m flight path maximizes statisticsg p
• 6 T field pinch minimizes backscatter, field inhomogeneity 

effects
• To be installed in flight path at FRM-2
• All systematics expected to be O(10-4)
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Interlude — What are ultracold 
neutrons?neutrons? 

• Very slow neutrons (v < 8m/s)
• Totally reflected by some materials

• Hence they can be totally confined within a bottle for• Hence, they can be totally confined within a  bottle for 
periods in excess of 100 seconds.

• Typically: velocity < 8m/s• Typically: velocity < 8m/s
kinetic energy < 3x10-7 eV
wavelength > 500Å
or temperature < 4 mK

3mg
or temperature < 4 mK

• cf:     Gravity: 10-7 eV/ meter.
Magnetic field ( B) 10 7 eV/ 1 7 T
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Magnetic field (B): 10-7 eV/ 1.7 T.



UCNA Experiment — General  Approach
Novel features: UCN from pulsed spallation sourceNovel features: UCN from pulsed spallation source

MWPC + plastic scintillator as  detector
Ultimate Goal: 0.2% measurement of A (A/A = 0.2%)

• Neutron Polarization
– UCN (can produce >99% polarization with 7T magnetic field)
– Copper and diamond-like carbon coated neutron guide (lowCopper and diamond like carbon coated neutron guide (low 

depolarization)
• Background

– Pulsed UCN source– Pulsed UCN source
– MWPC+Plastic scintillator

• Electron backscattering
MWPC Pl ti i till t– MWPC+Plastic scintillator

• Fiducial volume selection
– MWPC
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UCNA Experiment — Apparatus

Neutron Absorber

Field Expansion Region

Decay Trap Window
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UCNA Status
• Taking production data since 2009 using LANL 

UCN sourceUCN source
• Latest result: A=-0.11954(112)
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Nab experiment in design stage

• Nab will measure a bNab will measure a,b 
at SNS in US

Recall a=electron– Recall a=electron-
neutrino correlation

– Reconstruct openingReconstruct opening 
angle from Ep, Ee

– Ee from Si detectors,Ee from Si detectors, 
Ep from TOF
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Neutron Lifetime affects BBN
2 7Light elements from H up to Li created in "first three minutes"

Weak reactions between particles:
        ,en e p    σν ~ 1/τn

Primordial nucleosynthesis:

t = 1 s        ,       (all have same Feynman diagram)
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t = 150 s

At time  1 , at "freeze-out" temperature :

neutron to proton ratio frozen to: 
/ exp( Δ / ) 1/ 6

 s 1 MeVf

n p m kT

T

 



n-
m

as

4

        / exp( Δ / ) 1/ 6.

After another 150 s, practically all neutron wind up in He,
i.e., He mass fraction 2 neutron

f

p

n p m kT

Y

  


   mass fraction 25%.

Δm = mn − mp = 1.3 MeV
Temperature (K)

Dubbers 2013
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And ratio of He/n depends directly on n lifetime: 1% lifetime 
uncertainty shifts calculated He fraction of Y=0.2480+/- .0003 
by 0.0015, or 5 sigma!



Lifetime uncertainty has grown recently 

( ) ( )

And central value has shifted by almost 1%!

Serebrov et al.,PDG 2001-2010          (885.7 0.8) s ( 1)
Serebrov  . 2005    (878.5 0.8) s
Pichlmaier  . 2010 (880.7 1.8) s
PDG 2012                    (880.1 1.1) s  ( 1.8)
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Serebrov et al.,
PL B 605, 72 (2005)
Pichlmaier et al.,
PL B 693, 221 (2010)

B M th d C t th d i Bottle method: count the survivorsBeam Method: Count the dying Bottle method: count the survivors
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Danger: absolute monitor efficiency needed!



Material bottle experiments involved 
100 s extrapolations due to wall losses100 s extrapolations due to wall losses

Mampe bottle experiment
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Solution: eliminate wall losses using 
magnetic bottlemagnetic bottle

• A new crop of experiments using magnetic traps is now 
under developmentp

• Stern-Gerlach effect repels polarized neutrons from walls
ILL Ezhov Bottle filled with vacuum NIST UCN trap filled with superfluid 4He

7June 2013
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Penelope experiment under 
developmentdevelopment

• Superconducting multipolep g p
– Field zero in center eliminated by 

inner conductors

• Filled with UCN from FRM 2• Filled with UCN from FRM-2 
through gap in bottom

• Decay products detected at y p
top, guided by field lines

• Spectrum cleaned using 
absorber lowered from top

1.2 m

absorber lowered from top
• Magnet now under construction
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An outstanding problem: phase space 
evolutionevolution

• Neutron losses on scale of neutron lifetime 
(quasibound orbits)(quasibound orbits)

• Detector efficiency changes with time
• Must fill phase space evenly quickly: chaos!Must fill phase space evenly, quickly: chaos!

Symmetric Trap has stable orbits Asymmetric Trap has chaotic orbits
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UCNTau experiment designed to 
overcome phase space issuesovercome phase space issues
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UCNTau Experiment now 
commissioningcommissioning

• Asymmetric array of permanent 
magnets

• Holding field coils maintain 
polarization

• UCNs from Los Alamos source 
filled through door in bottom

• Neutrons to be counted by y
absorption on vanadium foil 
inserted in midplane of trap, 
activation counted ex-situ.

• Has stored neutrons in trap for 
first time.
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New beam-type experiment also 
nearing first results at J-Parcnearing first results at J Parc

Shield
Time Projection Chamber
with 3He‐4He‐CO2 gas 

Electrons are counted

Spin flipper

e- E

Polarized pulse‐beam
Electrons are counted

Polarizing 
supermirrors

Rise time ~10s

Beam 
Catcher

p
Zr Window

• TPC detects electrons from n decay and protons from n-absorption 
on 3He simultaneously

1m

on 3He simultaneously
• Leading systematic uncertainty expected to be pressure of 3He
• Physics run planned for 2013
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Conclusions

• Precision neutron beta decay measurements can search for physics 
b d h d d d l i h h i i i h HEPbeyond the standard model with a reach competitive with HEP

• And also underlie wide areas of nuclear and particle physics
• Beta decay correlation experiments in progress and next generation 

i d l t t i d SM t ll h fin development: overconstrained SM parameters allow search for 
BSM effects

• Neutron lifetime problem needs experimental resolution: it is coming, 
with new experiments worldwide approaching production datawith new experiments worldwide approaching production data

• Review papers: 
– Dubbers and Schmidt, Rev. Mod. Phys. 83, 1111 (2011)
– Abele, Pro. Part. Nucl. Phys. 60, 1 (2008)Abele, Pro. Part. Nucl. Phys. 60, 1 (2008)
– Wietfeldt and Greene, Rev. Mod. Phys. 83, 1173 (2011)

• Thank you to my collaborators and especially Dirk Dubbers, Bastian 
Maerkisch, Hartmut Abele, Chen-Yu Liu, Albert Young
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